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Outline

** Microgrids studied (Azores Islands, Puerto Rico; distribution feeders (Sheriff,
Banshee; large continental IEEE 8500 bus grid)

= Scaled up in size; diverse resources (wind, PVs, CHPs, storage), loads (priority,
controlled, uncontrolled), grid topologies (stand-alone; recongifurable with T&D)

** Lessons learned, Challenge problems

= Systems thinking key; need for transparent control co-design essential for meeting
any metrics desired; numerical evidence w/r to metrics dependence on control

*»* Rethinking the first principles: Unified modeling, design, control

= Modular, interactive modeling of components —I/O characterization
= Unified multi-layering of interactions for robustness and efficiency
** Three technology-agnostic principles to make it work

** New high tech business opportunities to innovate at value;
collaborations T
: HIT



Flores Island Power System-Typical micro-grid of the future*
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(Eds.). (2013). Engineering IT-enabled sustainable electricity services: the tale
of two low-cost green Azores Islands (Vol. 30). Springer Science & Business

Media.
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Effects of microgrid controller (AC OPF-based)

Stable Case: Unstable Case:
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Fig. 33. Simulation results demonstrating that the reactive power set points are crucially important to the dynamic stability of the system
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Potential to add PVs and support them with EVs
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Major concern: Frequency regulation?
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How to make it robust/small-signal stable?
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Transient stabilization
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Transient stabilization using flywheels

Concept of Sliding Mode Control Applied to a Flywheel
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The key role of grid reconfiguration to use DERs for reliable and resilient service
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Summary of lessons learned on four types of microgrids studied

** Multiple factors affecting LCOE (operating metrics, pricing, control design---must work!)

** Given performance objectives, control has the potential to reduce [CapEx, OpEx] and
to increase AEP/load served
-Flores/Sao Miguel islands: 100% clean power without increasing LCOE

-Puerto Rico system: 40% increase in electricity service cost critical load served using AC OPF/distributed
MPC; 50% increase in serving critical load during extreme events

-Sherif/Banshee microgrids—reduced need for batteries; no load shedding

-IEEE 8,500 distribution feeder—proof of concept participation in transactive energy management while

managing voltage in systems with high penetration of solar power

¢ Reducing CapEx: Generally less expensive storage needed; control infrastructure cost
much smaller

R

»* Reducing OpEx: Less fuel needed; less emission

*** Increased AEP by the renewables; increased load served during abnormal conditions

+*»* Basic R&D challenge: Implementation of fail-safe transparent control

* Possible way forward— systematic modeling, control and pricing innovation Illil



System enhancements needed—hidden traps

A (microgrid controller): should have adaptive performance metrics
and optimize over all controllable equipment (not the case today)

*B (secondary control-droops): modeling often hard to justify
(droops only valid under certain conditions)

“*C (primary control): A combination of primary and secondary
control should guarantee that commands given by microgrid
controller are implementable (stable and feasible). Huge issue—
hard to control power/rate of change of power while maintaining
voltage within the operating limits!

“*Note: Control co-design key to improved performance UHs



BaCk tO fl rSt prinCipleS. . Future Power Systems-Back to Physics
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The main objective for understanding physics

*Understanding how to think of a stand-alone
component within the grid

**Understanding how to think of the interconnected
power grid

**Based on this, understand the fundamental
variables which

- must be sensed and controlled at the component level

-must be exchanged between the components

-make the case for physics-based processing
underlying "smarts” design

s LIy



Physics-based information processing for smarts
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Linearized droop for G-T-G set — Motivation for SOA modeling of microgrids
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Basic R&D control challenge:

Overcoming complexity of modeling and control

Increased power electronics

Increased i
renewables Q\P“ P
- Battery } V\m

Main utility
connection
/ (
Electric
vehicle

Residenti
load

Crux of the problem: Present controls
are designed for P, (t) without
considering its dynamical effects

/

/

Prad

Radiation
dependent
current
source

\Model of solar PV droop? Starting from physics!!!

Qrad

Battery Control
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Possible way forward:

Multi-layered functional specifications
“**Interactive model of interconnected systems

--multi-layered complexity

--component (modules) — designed by experts for common
specifications (energy; power; rate of change of reactive
power)

--interactions subject to conservation of instantaneous power
and reactive power dynamics; optimization at system level in
terms of these variables

--physically intuitive models
x LIy



Example of a physics-based solar PV droop

EnergySpace Model: f |

' E(t) Praa |
E(.t) = Prad (t) + P.bat(t) + Pe.(t) T = P(t) O =: vi ‘I-"

p(t) = 4‘Et(t) - Qrad (t) - Qbat(t) - Qe (t) : —_l__ |
Here, E(t) =~ Li(t)? + 5 Cv(t)? \ =
- The power electronics switch control of batterycan | [ | P_b: Q_ba: _____________
be so designed that would ensure —

p(. ref Radiation D
Py, (t) = —P, [n] + P[n] — Ki (LF (t) — lp [Tl]) dependent _| |'| I_"I
_KI};(V(t) N Vref [n]) Zl:):fc': Battery Control

Qpar(t) = —Qc[n] + Q[n] — KF (ir(t) — ih [n])
—KF (v (t) —V™n))

Over much longer time scale identified by sample number
k, it is possible to obtain the following relation (assuming
converter efficiencies are all 100%)

PV Energy-conversion Droop Relation:

AP[k] + APB%[k] = APT*4[k]

Coupled Droop: aAP[n]| + BAQ[n]| = AV[n]

DER Energy Conversion Droop Relation: AP[k] = cAW [k]

s LIy




Component specifications (load)
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Unified component specifications and interaction conditions in energy
space for stable/feasible operations [s,6,7,9]
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Theoretical foundations for three control co-design principles

“**Principle 1: BAs transform to iBAs. in order to support interactive

control and co-design today’s BAs are further organized as iBAs — groups of
stakeholders, both utility and third parties, with their own sub-objectives. Each iBA
is responsible for electricity services to its members and must communicate its
commitments in terms of intVars to participate in electricity services with others.

***Principle 2: Next generation SCADA to support this

information exchange among iBAs. As the operating conditions vary,

stakeholders process the shared information, as sketched in Fig- ures 1 and 3;
optimize their own sub-objectives, subject to own constraints and preferences; and,
communicate back their willingness to participate in system-wide integration.

***Principle 3: The basic information exchange is in terms of
energy, power and rate of change of reactive power intVars
with physical interpretation as a generalized ACE. 1 He



Concluding thoughts

** [terative control co-design has a great potential for enabling microgrids to meet
both technical and economic performance. It should be considered seriously, but
unified modeling and problem posing is required in context of microgrids and other
electric energy systems.

**» Today’s approach to managing difficult conditions is to either build more expensive
batteries or to pre-program protection for load shedding for the case scenarios
considered to be the most challenging. This is both expensive, can lead to un-
necessary load shedding and does generally not guarantee stable/feasible
operation when system inputs vary continuously.

+*** Research up to date shows the need to enhance control in particular using concepts
based on modeling in energy space.

** Minimal coordination should use AC Optimal Power Flow for scheduling both rﬁui__
power and reactive power/voltage dispatch. il
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